

THICKNESS VS. LAYERS

Spörndly, R. and Nylund, R

SLU (Swedish University of Agricultural Sciences) 17-01-2017

Background

The study was designed to compare the bale shape, the bale integrity and the silage quality when using three different types of stretch film 19μ , 21μ and 25μ applied in 4, 6 and 8 layers on the bale.

Performance of test

Study performed 2016 by SLU (Swedish Agricultural University, Uppsala, Sweden), supported by Trioplast AB, Smålandsstenar, Sweden.

- 54 round bales were produced by a combined baler/stretch film applier.
- Nine treatments. 19µ, 21µ and 25µ film was applied with 4, 6 or 8 layers on the bales. 9 replicates evenly distributed in 9 blocks over the field.

Block	Thickness	Layers
1.	19 µ	4
2.	19 µ	6
3.	19 µ	8
4.	21 μ	4
5.	21 μ	6
6.	21 μ	8
7.	25 μ	4
8.	25 μ	6
9.	25 μ	8

Results

- 4 layers of balewrap is not sufficient to create an airtight bale
- 4 layers of balewrap creates more mould on the surface then bales done with 6 or 8 layers
- Bales done with only 4 layers of balewrap has higher probability to be damaged by birds
- 6 layers of balewrap is minimum recomendation but 8 layers always gives more airthight bales
- With 6 layers of balewrap, 19μ and 21μ has the same airthightness as 25μ balewrap
- With 8 layers of bale wrap 19μ and 21μ tend to give more airthight bales then 25μ balewrap
- 19, 21 and 25 µ balewrap gives the same silage quality

